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Introduction
Coconut scientifically identified as Cocos nucifera L., 

cultivation is widespread in India, covering a sprawling 
area of 21.99 lakh hectares and yielding a total production 
of 14301 metric tons (Ministry of Agriculture and Farmers’ 
Welfare, 2020-21). Coconut palms are grown in several 
states across India, particularly in coastal regions and areas 
with tropical climates such as Kerala, Karnataka, Tamil 
Nadu, Andhra Pradesh, Odisha, West Bengal, Maharashtra, 
and Gujarat. Kerala is often referred to as the “Land of 
Coconuts” and is a major contributor to coconut production 
in the country. Kerala, in particular, plays a pivotal role in 
coconut production, boasting an area of 7.69 lakh hectares 
and an impressive production of 4788 metric tons (Ministry 
of Agriculture and Farmers’ Welfare, 2020-21). Hence this 
study has been confined to the forecasting of coconut price 
for the state of Kerala.

Forecasting of price in agriculture plays a significant 
role in the planning and decision-making processes for 

farmers, agribusinesses, and policymakers. Since agriculture 
is inherently risky, with factors such as weather conditions, 
pests, and diseases affecting crop yields. Price Forecasting 
of price helps farmers anticipate market conditions, allowing 
them to make informed decisions about crop selection, 
production levels, and marketing strategies to manage their 
financial risk. Farmers need to make decisions about the 
types and quantities of inputs (seeds, fertilizers, pesticides) 
to use for their crops. Accurate price forecasts enable them to 
plan their input purchases more effectively, optimizing their 
resource allocation and improving overall farm profitability. 
By having insights into future price trends, farmers can 
time their sales to maximize profits. Understanding market 
dynamics allows them to choose the most opportune times 
to sell their produce, avoiding potential losses during periods 
of low prices. Accurate price forecasts assist in better supply 
chain management (Dellino et al., 2018). This is particularly 
important for coordinating the flow of agricultural products 
from farms to processors, distributors, and retailers. It helps all 
the stakeholders optimize their logistics and storage, reducing 
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waste and improving overall efficiency. Governments and 
policymakers rely on price forecasts to formulate effective 
agricultural policies which includes decisions related to 
subsidies, import/export regulations, and other interventions 
to stabilize markets, extent of support-to-support farmers, 
and ensure food security. Price forecasting indirectly affects 
consumers by influencing the supply and pricing of food 
products. Stable and predictable prices contribute to food 
security and affordability, benefiting consumers and ensuring 
a steady food supply (IMF, 2022).

Time series forecasting is the practice of predicting 
future data points by analysing observed data over a specific 
period known as the lead time. Its primary objective is to 
establish a basis for effective production control, production 
planning, and the optimization of both industrial processes 
and economic planning. The ultimate goal is to achieve 
optimal forecasts by minimizing the mean square deviation 
between actual and predicted values for each lead time.

Over recent decades, substantial efforts have been 
invested in the development and improvement of time 
series forecasting models. The Box-Jenkins ARIMA model 
has been effectively employed for making predictions. 
ARIMA is used as a valuable tool for price forecasting 
in agriculture, especially when dealing with short-term 
predictions and relatively stable market, is a widely used 
time series forecasting method, and it can be applied to price 
forecasting in agriculture (Jadhav et al., 2017)

The ARIMA model, a stochastic process, is characterized 
by three parameters: p, d, and q. In this context, p signifies 
the Auto-Regressive (AR (p)) process, d involves integration 
(essential for transforming data into a stationary stochastic 
process), and q relates to the Moving Average (MA(q)) 
process (Gupta et al., 2018). In a stationary stochastic 
model, data consistently exhibit the same variance and 
autocorrelation. However, the challenge with the ARIMA 
model lies in accurately estimating its parameters. To 
overcome this hurdle and ensure accurate forecasting, an 
automated model selection process becomes imperative 
(Siegel, 2012) to predict the future. These are based on a 
model (also called a mathematical model or a process

ARIMA models are particularly useful when dealing with 
time-dependent data, such as historical prices of agricultural 
commodities. Once the model is fitted and validated to the 
observed data, it is used to forecast future prices. The forecast 
will be generated based on the established patterns in the 
historical data. Accuracy of the ARIMA model is evaluated 
by comparing its forecasts to actual prices. Common metrics 
for evaluation include Mean Absolute Percentage Error 
(MAPE), and Root Mean Squared Error (RMSE). However, 
these models may fall short when the underlying process is 
nonlinear, a common characteristic of real-world systems.

Data Sources and Methodology
Data used in this study is the monthly coconut price data 

(per 100 Nos) spanning from January 2007 to December 
2020, sourced from the Directorate of Economics and 
Statistics, Government of Kerala. The monthly coconut 
prices from January 2007 to December 2019 were used to 
train the model, and the data for the entire year of 2020 were 
reserved for model validation.
Decomposition of additive time series

To understand the underlying patterns, the acquired time 
series data was decomposed using the additive decomposition 
method. This involves breaking down the observed data 
into three components: trend, seasonality, and residual. The 
mathematical representation of the additive decomposition 
is given by equation (1), Yt where is the observed value, Tt 
is the trend component, St is the seasonal component, and et 
is the residual component.  

Yt = Tt + St + et     ... (1) 
where:

Yt is the observed value at time t,
Tt is the trend component at time t,
St is the seasonal component at time t,
et is the residual (error) component at time t.
Once the time series is decomposed into these 

components are can separately examine and analyse the 
trend, seasonality, and residuals. This decomposition aids 
in making more accurate predictions and understanding 
the underlying structure of the time series data. It is often 
employed in various forecasting and analytical applications, 
including time series modelling and forecasting.
Autocorrelation analysis

The Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) were employed for 
understanding the correlation structure within the time series. 
ACF measures the correlation between a time series and 
its lagged values, while PACF removes intermediate lags’ 
effects. Significant spikes in these plots aid in identifying 
potential processes. 
AR process

An Autoregressive (AR) process (Ullrich, 2021) is a 
mathematical model used to describe a time series (equation 
2) where the current value of the series is linearly dependent 
on its past values. In other words, an AR process expresses 
the idea that the current observation is a weighted sum of 
its own past observations, with an additional white noise 
term representing random fluctuations. The order of the 
AR process, denoted as p, indicates the number of past 
observations considered in the model.

yt = s1yt–1 + s2yt–2 + ... + sp yt–p + et   ...(2)
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where 
yt : value of time series at time t
s1, s2 , ... & sp :  autoregressive coefficients
et : white noise error term at time t

MA process
A Moving Average (MA) process is a mathematical 

model (equation 3) used to describe a time series (Ullrich, 
2021) where the current value of the series is modelled as 
a linear combination of past white noise terms (random 
shocks or innovations). Unlike the Autoregressive (AR) 
process that depends on past values of the time series, the 
MA process emphasizes the influence of past random shocks 
on the current observation.

yt = et + q1et–1 + q2et–2 + ... + qq et–q  …(3)
where

yt : value of time series at time t
q1, q2, ... & qq :  moving average coefficients
et : white noise error term at time t

Autoregressive integrated moving average model
The Autoregressive Integrated Moving Average 

(ARIMA) model is a widely used time series forecasting 
method (Wilson, 2016) which combines autoregression, 
differencing, and moving averages. ARIMA is designed 
to capture different patterns and trends in time series data, 
making it useful for predicting future values. The breakdown 
of the key components of the ARIMA model.  The general 
notation for an ARIMA model is ARIMA (p, d, q), where ‘p’, 
‘d’, and ‘q’ are the parameters described above. The core of 
the ARIMA model involves the synthesis of Autoregressive 
(AR) and Moving Average (MA) polynomials, creating a 
complex polynomial representation as illustrated in equation. 
The ARIMA (p, d, q) model is then employed across all data 
points in the time series data

       ...(4)

where
μ: represents the mean value of the time series data.
p: denotes the number of autoregressive lags.
σ: signifies the autoregressive coefficients (AR).
q: stands for the number of lags in the moving average 

process.
q : represents the moving average coefficients (MA).
ε: denotes the white noise in the time series data.

The parameter ‘d’ indicates the number of differences 
needed to make the time series stationary and is given in 
equation (5) below: 

When d=1,     Dy = yt – yt–1   ...(5)
Differencing is done up to that time point when the 

data becomes stationary. The Augmented Dickey-Fuller 
(ADF) test was used to determine stationarity. The Maximum 
Likelihood Estimation (MLE) method is commonly used 
to estimate the parameters of an ARIMA model. The goal 
of MLE is to find the values of the model parameters that 
maximize the likelihood function. The likelihood function 
measures the probability of observing the given set of data 
under the assumed ARIMA model. The model selection is 
done using criteria such as Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC) (Akaike, 
1974) 
Model evaluation

The predictive capabilities of the ARIMA models are 
assessed using the data for the year 2020 kept for validation 
purpose. Performance metrics such as Mean Absolute 
Percentage Error (MAPE) and Root Mean Squared Error 
(RMSE) were calculated to quantify the accuracy of the 
model’s predictions. MAPE and RMSE provide quantitative 
measures of how well the ARIMA model is forecasting 
or predicting the values compared to the observed values. 
Regularly evaluating the ARIMA model using MAPE and 
RMSE creates a feedback loop for improvement.

Results and Discussion
Time series plot

The first step in time-series analysis is to plot the data. 
A time series plot is a graphical representation of a series 
of data points in chronological order, typically with the 
time variable on the x-axis and the corresponding values 
on the y-axis. Time series plots are widely used to visualize 
trends, patterns, and fluctuations in time-dependent data. The 
time series plot of the series under consideration are given 
in Figure 1. A perusal of figure indicates monthly price of 
coconut in Kerala has increased over the years. The mean 
price of coconut during study was Rs.1078.2 which range 
between Rs.412.7 to Rs. 2103.2 as shown in Table 1.
Decomposition of additive time series

The additive decomposed plot provides a visual 
breakdown of distinct elements within time series data—
namely, the trend, seasonality, and residuals (Figure 2). The 
trend component, characterized by an upward slope, signifies 
positive growth or a prevailing trend in the time series. On the 

Table 1. Descriptive statistics of monthly coconut price of Kerala

Series Min Max Mean St. Dev. CV (%) Skewness Kurtosis
Coconut Price 412.7 2103.2 1078.2 520.03 48.23 0.31 1.65

Forecasting of Coconut Price Using Time Series Modelling Technique
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other hand, the seasonal component showed some patterns or 
cycles, as evidenced by regular peaks and troughs, which may 
indicate a  seasonal nature of the time series data. The residual 
(error) component exhibits random fluctuations without any 
apparent pattern. Notably, the residuals maintain a mean 
value close to zero, suggesting an unbiased representation 
of the observed data. In essence, interpreting an additive 
decomposed plot entails scrutinizing each component to 
glean insights into trends, seasonality, and residuals. This 
holistic approach enhances our comprehension of the inherent 
patterns within the time series data.
Test for stationarity

PP test (Phillips and Perron, 1988) and Augmented 
Dickey Fuller (ADF) test (Dickey & Fuller, 1979) test are 
employed to see the presence of unit root in the data set. The 
results of the test are reported in Table 2. It is clear from the 

Figure 1: Time series plot of monthly coconut price of Kerala

Figure 2: Decomposition of coconut price time series into additive components

results of both test that the null hypothesis of unit root test 
is not rejected at 5% level of significance indicating non 
stationarity of the series. Table 2 also shows that the time 
series become stationary after first order differencing.
Table 2: Tests for stationarity

Test for stationarity on raw data
ADF test PP test

d p-value Z p-value
-3.38 0.06 -12.1 0.42

Test for stationarity on differenced data
ADF test PP test

d p-value Z p-value
-3.79 0.02 -57.63 <0.01
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Figure 3: ACF plot of monthly coconut price (raw data)

Figure 4: PACF plot of monthly coconut price (raw data)

Figure 5: ACF plot of monthly coconut price (after differencing)

ACF and PACF plots
Figure 5 and 6 indicated the presence of significant 

spikes or peaks in the ACF and PACF plots of differenced 
series at certain lags indicate strong autocorrelation at those 
lags. We will not consider higher order of p and q because 
those model selections may violate law of parsimony. Hence 
looking at these ACF and PACF plots of differenced series, we 
select up to two orders of p and q on a trial-and-error method.
Fitting ARIMA model

In this section, on the basis of value and AIC value 

and BIC value, best fitted ARIMA model is selected for 
the series. The best fitted model is ARIMA (1, 1, 0) with 
drift since it has the lowest AIC value (1579.864) and 
second lowest BIC value (1596.47) as shown in Table 
3. ARIMA (1, 1, 0) without drift model has lowest BIC 
value (1592.14) because BIC added penalty for adding one 
additional drift parameter in the model. 

Parameter estimates of selected ARIMA (1,1,0) with 
drift along with corresponding p-values are presented in 
the Table 4. The p-values suggest that the parameters are 
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Figure-6: PACF plot of monthly coconut price (after differencing)

significant at 1% level of significance.  After that, residuals 
of best fitted models are investigated. Residuals didn’t show 
any significant pattern, which indicates that it is a white 
noise process.
Table 4: Parameter estimates of ARIMA (1, 1, 0)

Parameter Estimate p-value
AR (1) 0.64 <0.01
Drift 7.53 <0.01

Residual diagnostics
After fitting an ARIMA (1, 1, 0) model with drift to the 

coconut time series, we conducted the Box test to assess 
the presence of autocorrelation in the residuals. The null 
hypothesis of this test posits that there is no autocorrelation 
in the residuals. Examining the results presented in Table 6, 
we observe that the p-value exceeds the chosen significance 
level. Consequently, we do not reject the null hypothesis. This 
implies that there is no significant evidence of autocorrelation 
in the residuals.

Table 3. AIC and BIC values of ARIMA models

Sl. No Model AIC BIC
1 ARIMA (2, 1, 2) with drift 1591.44 1609.7
2 ARIMA (1, 1, 0) with drift 1579.864 1596.47
3 ARIMA (0, 1, 1) with drift 1615.73 1624.86
4 ARIMA (2, 1, 0) with drift 1589.27 1601.44
5 ARIMA (1, 1, 1) with drift 1589.29 1601.46
6 ARIMA (2, 1, 1) with drift 1589.02 1604.24
7 ARIMA (1, 1, 0) without drift 1586.05 1592.14
8 ARIMA (2, 1, 0) without drift 1587.95 1597.08
9 ARIMA (1, 1, 1) without drift 1587.97 1597.1
10 ARIMA (0, 1, 1) without drift 1615.82 1621.91
11 ARIMA (2, 1, 1) without drift 1587.7 1599.88

The findings suggest that our ARIMA (1, 1, 0) model 
with drift effectively captures the underlying patterns in the 
coconut time series, leaving no discernible autocorrelation 
in the residuals. Therefore, we can assert that our model 
provides a comprehensive fit to the data, and no additional 
information is left unexplained in the residuals. In essence, 
the coconut time series is well-represented by our model, 
and it appears to be a suitable and complete description of 
the observed data.
Model validation

A comparative performance of the results of ARIMA 
model has been carried out in terms of Mean absolute 
percentage error (MAPE) and Root mean square error 
(RMSE) and is reported in Table 5. Model selection is 
typically carried out using AIC and BIC values. Based on 
these criteria, we initially chose an ARIMA (1, 1, 0) model 
with drift. However, during model validation, we compared 
several models using MAPE and RMSE values to ensure the 
chosen model’s superiority. 
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Table 5: Validation of ARIMA (1, 1, 0) with drift model

Sl. No Model Training data Testing data
RMSE MAPE RMSE MAPE

1 ARIMA (2, 1, 2) with drift 39.28 2.84 96.57 3.87
2 ARIMA (1, 1, 0) with drift 39.53 2.82 99.5 4.01
3 ARIMA (0, 1, 1) with drift 43.36 3.1 122.23 5.03
4 ARIMA (2, 1, 0) with drift 39.52 2.82 98.85 3.99
5 ARIMA (1, 1, 1) with drift 39.53 2.82 98.96 3.99
6 ARIMA (2, 1, 1) with drift 39.21 2.82 103.54 4.22
7 ARIMA (1, 1, 0) without drift 39.62 2.79 134.39 5.29
8 ARIMA (2, 1, 0) without drift 39.61 2.79 132.73 5.23
9 ARIMA (1, 1, 1) without drift 39.61 2.79 133.02 5.24
10 ARIMA (0, 1, 1) without drift 43.65 3.05 169.44 7.47
11 ARIMA (2, 1, 1) without drift 39.29 2.79 137.17 5.42

The ARIMA (2, 1, 2) model with drift exhibited only a 
marginal improvement over our selected ARIMA (1, 1, 0) 
model with drift. Considering the principle of parsimony 
(Epstein, 1984), we prioritize simpler models with fewer 
parameters. Though additional parameters can add more 
information into the model, they are not preferred unless 
they significantly reduce errors during fitting on another 
dataset for the same commodity.

Here our ARIMA (1, 1, 0) with drift model has performed 
much reasonably with a smaller number of parameters as 
compared with ARIMA (2, 1, 2) with drift model. It reaffirms 
our selection of ARIMA (1, 1, 0) with drift model as the 
best suited forecasting model for the time series under 
consideration with relatively lower RMSE and MAPE value 
for both testing and training data set.

Graphical representation of actual and fitted values of 
monthly coconut price of Kerala is represented below in 
Figure-4. Blue line represents actual data series and red line 
represents fitted value series. It is clear from the Figure 4 that 
two lines are nearly overlapping to each other, which shows 
that our fitted model is capture almost all the variations in 
the actual time series data and is a best fit.

Conclusion and Policy Implications
In this study, our primary objective was to develop a 

robust forecasting model for coconut prices in Kerala using 
monthly price data. Initial assessments through Augmented 
Dickey-Fuller (ADF) and Phillips-Perron (PP) tests revealed 
that the raw data was non-stationary. To address this, we 

applied differencing to the data, rendering it stationary. 
Subsequently, by analysing the Autocorrelation Function  
and Partial Autocorrelation Function plots of the differenced 
time series data, we systematically experimented with various 
combinations of ARIMA parameters (p, d, q).

The selection process involved evaluating the Akaike 
Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) values for each candidate model. Our final 
choice was an ARIMA (1, 1, 0) model with a drift component. 
To validate the model’s performance, we conducted thorough 
assessments on both training and testing datasets, employing 
metrics such as RMSE and MAPE.

Although certain models with a greater number of 
parameters exhibited marginal improvements in accuracy 
compared to our chosen ARIMA (1, 1, 0) with drift model, 
these advantages were deemed negligible. This decision 
aligns with the principle of parsimony (Epstein, 1984), 
reinforcing our confidence in the selected model’s ability 
to effectively forecast coconut prices in Kerala.

The development of a robust forecasting model for 
coconut prices in Kerala, employing an ARIMA (1, 1, 0) 
model with a drift component, carries significant financial 
implications for stakeholders in the coconut industry. The 
accurate prediction of future coconut prices, facilitated by 
rigorous statistical analyses and model selection based on 
AIC and BIC values, enhances decision-making across the 
supply chain. Growers, traders, and businesses can optimize 
resource allocation, mitigate risks, and streamline operations, 
leading to cost efficiencies and improved profit margins. 
Investors benefit from informed decision-making, aligning 
their strategies with anticipated market trends, while the 
government can utilize the insights to formulate effective 
policies supporting agricultural stability. Overall, the adoption 
of this forecasting model not only strengthens financial 

Table 6: Ljung-Box test on residuals from ARIMA (1, 1, 
0) with drift model

Q df p-value
5.78 9 0.76

Forecasting of Coconut Price Using Time Series Modelling Technique
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Figure 7: Actual vs Fitted values of monthly coconut price of Kerala

performance at various levels of the coconut industry but also 
fosters a more resilient and competitive market environment 
in Kerala.
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